Einsatz weicher Materialien in der Soft-Robotik

Anpassungsfähige Lösungen für sichere Mensch-Maschine-Interaktion Durch den Einsatz weicher Materialien in der Soft-Robotik entstehen flexible Systeme, die für den Menschen ein hohes Maß an Sicherheit bieten. Allerdings fehlt diesen Systemen oft die nötige Stabilität, um viele Aufgaben erfüllen zu können. Im Rahmen des Fraunhofer Cluster of Excellence Programmable Materials (CPM) werden Strukturen mit anpassbarer Steifigkeit entwickelt, um eine größere Tragfähigkeit bei gleichzeitiger Gewährleistung der Sicherheit zu erreichen. Dafür wird ein programmierbares Material geschaffen, das seine Steifigkeit wiederholbar und ortsgenau dynamisch verändern und fixieren kann. Diese Funktion ermöglicht den Einsatz als schaltbares Gelenk in menschennahen Robotern und erlaubt eine schlanke, akzeptanzsteigernde Bauweise. Es werden zwei Ansätze verfolgt, die ausgehend von den Primäranforderungen nach hohem Schaltfaktor und hoher Schaltdynamik geeignete Mechanismen identifizieren, im Systemansatz umsetzen, testen und anschließend in ein programmierbares Material überführen. Einer dieser Ansätze, der Vakuum-Mechanismus, kombiniert die Effekte der Partikel- und Schichtstauung, die durch Evakuierung des Systems entstehen. Dadurch wird eine reversibel und wiederholbar schaltbare Steifigkeitsveränderung mit einem Schaltfaktor K > 100 erreicht.

Durch den Einsatz eines programmierbaren Materials mit pneumatisch schaltbaren Rastmechanismen in den Elementarzellen kann eine schnelle und präzise Formveränderung und Formfixierung in weniger als 1 Sekunde erreicht werden. Im Gegensatz zu herkömmlichen Ansätzen erfolgt die Steifigkeitsanpassung unabhängig von der Bewegungsaktorik, was völlig neue Bewegungskonzepte für die Robotik ermöglicht.

Um die Skalierbarkeit dieses Ansatzes zu verstehen, wird ein Simulationsmodell entwickelt, das die Zusammenhänge zwischen den Geometrieparametern und den funktionellen Eigenschaften der Elementarzellen abbildet. Dadurch kann die Übertragbarkeit dieses innovativen Mechanismus der Bistabilität auf verschiedene Anwendungsskalen gewährleistet werden.

Künstliche Haut für komplexe Roboterstrukturen

Wissenschaftler haben eine innovative Methode entwickelt, um künstlich gezüchtete Haut auf die komplexen Oberflächen humanoider Roboter aufzubringen. Diese Technologie verspricht, die Bewegungsfähigkeit, Selbstheilungskräfte, integrierten Sensorfunktionen und das realistische Erscheinungsbild von Robotern erheblich zu verbessern.

Um eine stabilere Verbindung zwischen Roboterteilen und künstlicher Haut zu schaffen, wurde eine neue Technik mit speziellen V-förmigen Perforationen in festen Materialien entwickelt. Diese Innovation könnte nicht nur in der Robotik, sondern auch in der Schönheitsindustrie und in der Ausbildung von Chirurgen für rekonstruktive Eingriffe Anwendung finden. Für die Befestigung der Haut verwendeten die Forscher ein spezielles Kollagengel, dessen natürliche Viskosität es erschwerte, es in die winzigen Perforationen einzubringen.

Mit Hilfe des speziellen Gels gelang es, die feine Struktur der Haut nachzubilden und diese eng mit der Oberfläche zu verbinden. Professor Takeuchi und sein Team verfolgen mit ihrer Forschung nicht nur wissenschaftliche Erkenntnisse, sondern auch praktische Anwendungen in der Medizin. Das Konzept eines „Face-on-a-Chip“ könnte sich beispielsweise für die Erforschung von Hautalterung, Kosmetika oder chirurgische Eingriffe als sehr nützlich erweisen. Darüber hinaus könnten integrierte Sensoren die Wahrnehmungs- und Interaktionsfähigkeiten von Robotern verbessern. Obwohl die Forschung noch am Anfang steht, haben die Entwickler bereits neue Herausforderungen identifiziert, wie die Notwendigkeit von Oberflächenfalten und einer dickeren Epidermis, um eine menschenähnlichere Optik zu erreichen.

Render and Diffuse

Menschen entwickeln beim Erlernen neuer manueller Fähigkeiten keine aufwendigen Berechnungen, um die erforderlichen Bewegungen ihrer Gliedmaßen zu ermitteln. Stattdessen stellen sie sich vor, wie ihre Hände sich bewegen müssen, um eine bestimmte Aufgabe effektiv auszuführen.

Forscher vom Imperial College London und dem Dyson Robot Learning Lab haben eine innovative Methode entwickelt, um Roboter effizienter und menschenähnlicher lernen zu lassen. Ihr Ansatz, „Render and Diffuse“ (R&D) genannt, zielt darauf ab, die Kluft zwischen hochdimensionalen Beobachtungen und niedrigdimensionalen robotischen Aktionen zu überbrücken, insbesondere wenn Datenmangel herrscht.

Ein wesentlicher Bestandteil dieser Methode ist die Nutzung virtueller Darstellungen eines 3D-Robotermodells. Indem niedrigdimensionale Aktionen im Beobachtungsraum visualisiert werden, konnte der Lernprozess deutlich vereinfacht werden. Ein Beispiel dafür ist das Herunterklappen eines Toilettendeckels – eine Aufgabe, die laut humorvoller Aussage von Frauen viele Männer nicht bewältigen können.

Diese Render and Diffuse-Methode ermöglicht es Robotern, etwas Ähnliches zu tun: Sie können ihre Aktionen innerhalb der virtuellen Darstellung ‚visualisieren‘, indem sie digitale Abbilder ihres eigenen Körpers verwenden.

Durch eine reduzierte Anzahl von Übungen lässt sich dasselbe Ergebnis erzielen, nämlich eine bessere Fähigkeit, das Gelernte in unterschiedlichen Situationen anzuwenden.

Literatur

Vosylius, Vitalis, Seo, Younggyo, Uruç, Jafar & James, Stephen (2024). Render and Diffuse: Aligning Image and Action Spaces for Diffusion-based Behaviour Cloning.

Der Einsatz von Cobots in der Bäckerei

Der Einsatz von Cobots in der Bäckerei

Der Mangel an Fachkräften stellt derzeit für viele Unternehmen ein großes Hindernis dar. Um dennoch wettbewerbsfähig zu bleiben, müssen nicht nur die Kernprozesse, sondern auch vor- und nachgelagerte Arbeitsschritte zunehmend automatisiert werden. Hierbei kommen immer häufiger kollaborative Roboter, sogenannte Cobots, zum Einsatz, die ihre Stärken genau in diesen Bereichen ausspielen. Ein Cobot mit einer eigenen SPS-Steuerung lässt sich leicht nachrüsten und kann Aufgaben übernehmen, die zuvor von Menschen durchgeführt wurden.

Ein anschauliches Beispiel dafür sind automatisierte Großbäckereien. In diesen Umgebungen, zwischen Brötchen und Laugengebäck, werden Cobots immer häufiger eingesetzt. Insbesondere in Fertigungsstraßen, in denen regelmäßig Backbleche zugeführt und am Ende der Backzeit wieder entnommen werden müssen, leisten sie wertvolle Dienste.

Da diese Tätigkeiten eine gewisse Vorsicht erfordern und in unmittelbarer Nähe zu menschlichem Personal stattfinden, sind herkömmliche Roboter hierfür ungeeignet. Moderne Cobots hingegen, mit ihrem großen Arbeitsradius und ihrer hohen Beweglichkeit, können diese Aufgaben problemlos und ohne Risiko für die Mitarbeiter übernehmen. Dies führt zu einer Entlastung der Beschäftigten und einer effektiveren Nutzung ihrer Arbeitskraft an anderer Stelle.

Roboter zum Kuscheln

Die japanische Firma Groove X verdient mit dem Roboter Lovot erfolgreich Geld, indem sie auf emotionale Bedürfnisse der Menschen abzielt. Lovot, ein kleiner, kuscheliger Roboter, der auf Wärme und Aufmerksamkeit reagiert, wurde seit 2018 etwa 14.000 Mal verkauft. Mit einem Preis von 3000 Euro pro Stück und monatlichen Servicegebühren von 70 Euro bleibt Lovot wirtschaftlich erfolgreich, da 90 Prozent der Kunden ihn auch nach drei Jahren noch nutzen.

Lovot gehört zur Kategorie der „haptischen Wesen“, die durch ihre einfache Technik, aber hohe emotionale Bindung auffallen. Diese Roboter bieten keine komplexen Interaktionen, sondern schaffen durch ihre Sensoren eine physische Erfahrung, die Menschen emotional anspricht. Vorläufer dieser Bewegung waren Roboter wie die Roboter-Robbe Paro. Andere Beispiele sind das schwanzwedelnde Kissen Qoobo und der mechanische Hamster Moflin.

Der Gründer von Groove X, Kaname Hayashi, erkannte während seiner Karriere bei Toyota und Softbank die Marktlücke für einfachere, emotional ansprechende Roboter. Seine Erfahrung mit dem humanoiden Roboter Pepper, der kommerziell nicht erfolgreich war, führte ihn zu der Einsicht, dass die Erwartungen der Menschen an Roboter oft zu hoch sind.

Hayashi sieht den aktuellen Hype um humanoide Roboter kritisch und glaubt, dass echte Durchbrüche noch Zeit benötigen. Bis dahin setzen er und andere auf Roboter, die emotionale Unterstützung bieten, wie Lovot. Die Hauptkäufergruppe sind Frauen zwischen 40 und 50 Jahren, die den Roboter als Ersatz für Haustiere sehen. Hayashi plant, Roboter mit KI zu entwickeln, die als persönliche Coaches fungieren und den Menschen helfen sollen, in einer sich schnell verändernden Welt glücklich zu bleiben und weiterzulernen.

Sollen KI-Modelle auch schlafen?

In Bezug auf die Art und Weise, wie Menschen Erinnerungen speichern und abrufen, existieren unterschiedliche Theorien. Eine dieser Theorien ist die Complementary Learning Systems Theorie, welche besagt, dass das Zusammenspiel zwischen dem Hippocampus und dem Neokortex, zwischen einem vereinfacht gesagt schnell lernenden und einem langsam lernenden Hirnareal, maßgeblich daran beteiligt ist, neue Erfahrungen in Erinnerungen umzuwandeln. Dieser Prozess findet vorrangig im Schlaf statt.

Die Entwicklerinnen und Entwickler neuronaler Netze machen sich derartige Theorien aus der Hirnforschung zunutze. Im Jahr 2021 hat ein Team aus Singapur mit DualNet ein KI-Modell vorgestellt, welches sowohl einen langsamen als auch einen schnellen Trainingsprozess anwendet und somit das menschliche Lernen imitiert.

In einer aktuellen Studie gehen Forschende der Universität von Catania in Italien noch einen Schritt weiter, indem ihr Algorithmus mit an diese Theorie angelehnten Schlaf- und Wachphasen arbeitet. Man wollte herausfinden, ob KI-Modelle zuverlässiger werden, wenn sie nicht durchgängig mit neuen Informationen bombardiert werden, sondern zwischendurch die Möglichkeit haben, Informationen „sacken zu lassen”. In der Tat gibt es im maschinellen Lernen ein Phänomen, das als „katastrophales Vergessen“ bezeichnet wird. Hierbei vergessen die Algorithmen das zuvor Gelernte komplett. Eine mögliche Erklärung für dieses Phänomen ist, dass während des sequentiellen Lernens neue Repräsentationen die alten überlagern und somit aus dem Gedächtnis zurückdrängen.

Um zu überprüfen, ob eine Aufteilung in Schlaf- und Wachphasen die Algorithmen in der Anwendung robuster macht, haben die Forscherinnen und Forscher aus Catania eine Trainingsmethode namens Wake-Sleep Consolidated Learning entwickelt und auf ein Modell zur Bilderkennung angewendet. Sie führten eine Schlafphase ein, die die Zustände des menschlichen Gehirns nachahmt, in denen synaptische Verbindungen, Gedächtniskonsolidierung und das Lernen von Bildern im Vordergrund stehen.

In der Wachphase wurde das Modell mit Trainingsdaten gefüttert, in diesem Fall mit neuen Bildern von Tieren. In dieser Phase werden neue Erfahrungen gewissermaßen im Kurzzeitgedächtnis gespeichert. Die Wachphase wird durch die Schlafphase abgelöst, die sich ihrerseits in zwei Phasen unterteilt, die dem menschlichen Schlaf ähneln. Die erste Phase wird als Non-REM-Schlaf bezeichnet und dient der Verarbeitung von Erinnerungen, die während der Wachphase gesammelt wurden. Zudem werden vergangene Erfahrungen verarbeitet, wobei ältere Trainingsdaten im Langzeitgedächtnis konsolidiert werden. Die zweite Phase wird als REM-Schlaf bezeichnet und ist durch das Träumen gekennzeichnet. Des Weiteren ist der REM-Schlaf zu nennen, in dem das Träumen neue Erfahrungen simuliert und das Gehirn auf zukünftige Ereignisse vorbereitet. Diese Traumphase, in der die KI abstrakte Bilder mit verschiedenen Tierkombinationen verarbeitet, ist von Bedeutung, da sie dazu beiträgt, bisherige Wege digitaler Neuronen zusammenzuführen und somit Platz für andere Konzepte in der Zukunft zu schaffen. Dies sollte dazu beitragen, dass das Modell neue Konzepte leichter erlernen kann, was als eine Art Gehirnjogging für die KI bezeichnet werden kann.

Im Anschluss wurde der mit dieser Methode trainierte Algorithmus mit drei gängigen Bilderkennungsmodellen verglichen. Dabei zeigte sich, dass die Erkennungsrate zwischen zwei und zwölf Prozent höher lag. Zudem war der sogenannte Vorwärtstransfer höher, was bedeutet, dass das Modell mehr altes Wissen anwendete, um neue Aufgaben zu lernen. Dies lässt den Schluss zu, dass die Plastizität neuronaler Netze durch konkrete Schlaf- und Wachphasen verbessert werden kann.

Literatur

https://www.heise.de/news/Lernen-im-Schlaf-Wieso-auch-eine-KI-mal-abschalten-sollte-9621667.html (24-06-09)

Können Roboter arbeitslos werden?

Kurz und knapp: Nein, Roboter können nicht arbeitslos werden, denn Roboter und Maschinen sind keine Menschen, haben keine Bedürfnisse wie Menschen und müssen daher auch kein Geld verdienen, um zu leben. Roboter können also nicht im herkömmlichen Sinne arbeitslos werden, da sie keine Bedürfnisse und keine finanziellen Verpflichtungen haben, wie dies bei menschlichen Arbeitnehmern der Fall ist. Dennoch gibt es einige Aspekte, die betrachtet werden können, um diese Frage aus einer anderen Perspektive zu beleuchten:

1. Nutzung und Einsatz:
Ein Roboter, der für eine bestimmte Aufgabe nicht mehr benötigt wird, könnte als „arbeitslos“ betrachtet werden. Dies kann der Fall sein, wenn der Roboter durch eine neuere, effizientere Technologie ersetzt wird oder wenn die Aufgabe, für die der Roboter programmiert wurde, nicht mehr existiert.

2. Veralterung und Obsoleszenz:
Technologischer Fortschritt kann dazu führen, dass ältere Modelle von Robotern durch neue, leistungsfähigere Versionen ersetzt werden. Ältere Roboter können dann außer Betrieb genommen oder für andere, weniger anspruchsvolle Aufgaben umprogrammiert werden.

3. Wartung und Reparatur:
Roboter, die nicht mehr repariert oder gewartet werden können, weil Ersatzteile nicht mehr verfügbar oder die Wartungskosten zu hoch sind, könnten ebenfalls als „arbeitslos“ betrachtet werden.

4. Umprogrammierung:
Manchmal werden Roboter umprogrammiert, um andere Aufgaben zu übernehmen, anstatt vollständig außer Betrieb genommen zu werden. Dies zeigt eine gewisse Flexibilität von Robotern im Gegensatz zu menschlichen Arbeitskräften.

5. Wirtschaftliche Aspekte:
In wirtschaftlich schwierigen Zeiten könnten Unternehmen den Einsatz von Robotern reduzieren, um Kosten zu sparen. In solchen Fällen könnten Roboter nicht eingesetzt werden, obwohl sie theoretisch verfügbar wären.

Zusammenfassend lässt sich sagen, dass Roboter technisch gesehen nicht arbeitslos werden können, da sie keine Arbeit im menschlichen Sinne verrichten. Sie können jedoch inaktiv oder obsolet werden, wenn sie nicht mehr benötigt oder durch bessere Technologien ersetzt werden. Die Befürchtung, dass Roboter und Automatisierung zu Massenarbeitslosigkeit führen, ist weit verbreitet. Es ist richtig, dass Automatisierungstechnologien Aufgaben übernehmen können, die bisher von Menschen ausgeführt wurden, was in einigen Branchen zum Verlust von Arbeitsplätzen geführt hat. Aber Automatisierung schafft auch neue Arbeitsplätze, und Studien zeigen, dass sich Jobgewinne und -verluste langfristig die Waage halten: Die Langzeitstudien von Oxford Economics https://www.oxfordeconomics.com/resource/techonomics-talks-skilling-the-future/ und dem McKinsey Global Institute https://www.mckinsey.com/featured-insights/future-of-work/jobs-lost-jobs-gained-what-the-future-of-work-will-mean-for-jobs-skills-and-wages kommen zu dem Schluss, dass die Automatisierung zwar in einigen Bereichen zu Arbeitsplatzverlusten führen wird, gleichzeitig aber in anderen Bereichen neue Arbeitsplätze entstehen. Welche Berufe genau von der Automatisierung betroffen sein werden und welche neu entstehen, lässt sich nicht im Detail vorhersagen. Der Arbeitsmarkt wird sich jedoch in den nächsten Jahren weiter verändern und neue Qualifikationen und Kompetenzen werden gefragt sein.

Die Prägung des Alltagslebens in Japan durch Roboter

In Japan spielen Roboter eine bedeutende Rolle und werden nicht nur als technologische Innovation betrachtet, sondern haben auch eine starke soziale und emotionale Bedeutung gewonnen. Insbesondere in Bereichen wie der Gesellschaft für ältere Menschen und im Haushalt als Haustier-Ersatz sind Roboter weit verbreitet.

In Japan wird die Akzeptanz von Robotern als soziale Wesen und Lebensbegleiter besonders deutlich. Roboter dienen nicht nur als Spielkameraden, sondern werden auch als emotionale Partner betrachtet, die dazu beitragen, soziale und emotionale Bedürfnisse zu erfüllen. Beispielsweise werden Roboter als Haustier-Ersatz eingesetzt, um die Einsamkeit zu bekämpfen und älteren Menschen Gesellschaft zu leisten.

Die Verwendung von Robotern als Teil des Alltagslebens in Japan verdeutlicht den kulturellen und technologischen Wandel, der sich im Umgang mit Technologie und Robotern vollzieht. Sie werden nicht nur als Werkzeuge oder Maschinen betrachtet, sondern als integrale und akzeptierte Bestandteile des täglichen Lebens. Dies zeigt, wie Technologie, insbesondere Robotik, immer mehr in die soziale Interaktion, emotionale Unterstützung und Alltagsbewältigung integriert wird.

Nähe und Distanz in der sozialen Robotik

Nähe und Distanz sind wichtige Themen, die soziale Roboter erst lernen müssen. Es hängt viel von der Kultur der Menschen ab, mit denen sie interagieren. Roboter begegnen uns immer öfter im Alltag – in der Pflege, im Restaurant, im Haushalt und bei der Arbeit. Sie erledigen viele Aufgaben perfekt, aber bei sensibler Kommunikation haben sie oft Schwierigkeiten. Zum Beispiel können sie ältere Menschen nach ihren Kriegserlebnissen fragen, was für manche sehr unsensibel ist, da sie diese Erfahrungen lieber verdrängen würden. Dies zeigt auch, dass Roboter oft Stereotypen im Kopf haben – Mann, hohes Alter, Krieg.

Andererseits reagieren Menschen unterschiedlich auf Roboter, je nach ihrer eigenen Kultur. Damit Roboter nicht länger kulturelle Fehler machen, müssen wir sie besser schulen. Dies sollte nicht nur auf die Kultur des Gegenübers abgestimmt sein, sondern auch auf die Aufgabe, die der Roboter erfüllen soll. Wenn ein Roboter nur eine Aufgabe leise erledigen soll, gelten andere Kriterien als für Maschinen, die als Entertainer unterhalten oder einfühlsame Gespräche führen sollen.

Roboter sollten die Vorlieben und Abneigungen von Menschen abspeichern, um unangenehme Situationen zu vermeiden. Wenn Roboter weiterhin Stereotypen verwenden und kulturelle Unterschiede nicht berücksichtigen, könnte dies die Akzeptanz von Robotern in unserer Gesellschaft verringern oder sogar Stereotypen verstärken. Es ist schwierig, wenn Roboter versuchen, Gesten und Mimik zu interpretieren, da sich Emotionen und Gesichtsausdrücke oft zwischen Kulturen unterscheiden. Menschen in asiatischen Ländern haben weniger Vorbehalte gegenüber Robotern in sozialen Rollen als Nordamerikaner und Europäer, haben jedoch oft realistischere Erwartungen an ihre Fähigkeiten. Es ist wichtig, sich vorzustellen, wie ein sozial interaktiver Roboter aussehen und sich verhalten soll. Diese Fragen sollten interdisziplinär beantwortet werden, mit der Hilfe von Soziologen, Anthropologen, Psychologen, Philosophen, Neurowissenschaftlern und Künstlern. Es sollte nicht allein denjenigen überlassen werden, die Roboter designen, bauen und programmieren.

Es ist möglich, dass die Fähigkeit der Roboter, kulturelle Normen auszudrücken oder darauf einzugehen, durch die Hintergründe ihrer Entwickler begrenzt wird. Bisher wurden Beziehungen zwischen Mensch und Roboter hauptsächlich in den USA und Japan untersucht, wo die meisten Roboter hergestellt werden. Forscher betonen jedoch, dass es wichtig ist, in Zukunft auch andere Länder in diese Forschung einzubeziehen.

Digital Workers im Gesundheitswesen

Die Kombination von medizinischer Robotik und künstlicher Intelligenz wird schrittweise autonomere Lösungen zur Verbesserung der Patientenversorgung hervorbringen. Durch die Kombination fortschrittlicher Technologien wie Robotic Process Automation, künstliche Intelligenz und Business Process Management im Rahmen einer intelligenten Automatisierung wird es möglich sein, digitale Arbeitskräfte zu generieren, die zur Lösung des Problems des Fachkräftemangels im Gesundheitswesen beitragen können. Digital Workers“ sollen dabei als softwarebasierte Assistenten unterstützen, indem sie Aufgaben automatisieren und so die Prozesseffizienz und Versorgungsqualität steigern.

„Die Robotik ist im Gesundheitswesen angekommen und heute unverzichtbar. Das gilt von der Diagnostik über chirurgische Eingriffe am Patienten bis hin zur Therapie. Die Einsatzmöglichkeiten sind vielfältig: Biopsien bei Hirntumoren, teleoperative Ultraschalluntersuchungen oder die Rehabilitation nach Unfällen oder Schlaganfällen“, sagt Axel Weber, Vizepräsident der Business Unit Medical Robotics bei Kuka. Der Einsatz von Robotik und künstlicher Intelligenz im Gesundheitswesen habe zahlreiche Vorteile. „Viele medizinische Einrichtungen sind mit einem Mangel an Fachkräften konfrontiert, der sich negativ auf die Qualität der Diagnose und Behandlung ihrer Patienten auswirken kann. Roboter sind nicht nur in der Lage, die Qualität von Behandlungen, die höchste Präzision und innovative Technologie erfordern, zu verbessern, sie sind auch ausdauernder als Menschen und werden nicht müde.“ Sie können Ärzte oder Pflegekräfte zudem von monotonen oder körperlich anstrengenden Aufgaben entlasten, damit diese sich auf andere Aufgaben bei der Behandlung des Patienten konzentrieren, die ihre volle Aufmerksamkeit erfordern.

Literatur

https://www.diepresse.com/18501089/intelligenz-im-dienste-des-patienten (24-05-27)
https://themedicalnetwork.de/roboter-im-gesundheitswesen/ (22-12-12)