Weiche Sensoren in der Robotik

Weiche Sensoren, die zwischen Scher- und Normalkraft unterscheiden können, könnten Maschinen die Feinsteuerung ermöglichen, die für eine sichere und effektive physische Interaktion mit Menschen erforderlich ist. Die Entwicklung von solchen Sensoren in Verbindung mit künstlicher Intelligenz steigert die Fähigkeiten von Robotern und macht sie lebendiger, was neue Möglichkeiten für die Zusammenarbeit zwischen Menschen und Robotern eröffnet. Dies ist wichtig, damit die Roboter intelligenter entscheiden können, welche Sensoren sie verwenden und wie sie auf verschiedene Situationen reagieren sollen. Da die Sensoren immer hautähnlicher werden und auch Temperatur und sogar Schäden erkennen können, müssen Roboter intelligenter entscheiden, auf welche Sensoren sie achten und wie sie reagieren sollen. Die Entwicklung von Sensoren und künstlicher Intelligenz muss daher Hand in Hand gehen.

Sarwar et al. (2023) haben einen kapazitiver Sensor entwickelt, der aus gemustertem Elastomer besteht und sowohl feste als auch gleitende Säulen enthält, die es dem Sensor ermöglichen, sich zu verformen und zu wölben, ähnlich wie die Haut selbst. Der Sensor unterscheidet zwischen einer gleichzeitig wirkenden Normalkraft und einer Scherkraft, indem er die Signale von vier verformbaren Kondensatoren summiert und differenziert. Darüber hinaus kann die Nähe der Finger in einem Bereich von bis zu 15 mm erkannt werden. Die Funktionsweise wird von den Forschern an einem einfachen Greifer demonstriert, der einen Becher hält, wobei die Kombination von Merkmalen und die einfache Herstellungsmethode diesen Sensor zu einem Kandidaten für die Implementierung als Sensorhaut für humanoide Roboteranwendungen machen.

Neue Sensoren können auf der Oberfläche einer Prothese oder eines Roboterglieds angebracht werden und ermöglicht es diesen, Berührungen wahrzunehmen und Aufgaben auszuführen, die bisher für Maschinen äußerst schwierig waren, wie etwa das Aufheben einer weichen Frucht. Darüber hinaus haben neue Sensoren eine weiche Textur, die sie wie menschliche Haut aussehen lässt, was eine sicherere und natürlichere Interaktion mit Menschen ermöglicht. Dadurch kann ein Prothesen- oder Roboterarm auf taktile Reize mit Geschicklichkeit und Präzision reagieren. also etwa zerbrechliche Gegenstände wie ein Ei oder ein Glas Wasser halten, ohne sie zu zerdrücken oder fallen zu lassen. Der Kern solcher Sensoren besteht aus Silikonkautschuk, einem Material, das in der Filmindustrie häufig zur Erzeugung spezieller Hauteffekte verwendet wird. Das einzigartige Design dieser Sensoren verleiht ihnen die Fähigkeit, sich zu biegen und zu falten, ähnlich wie die menschliche Haut. Solche Sensoren nutzen schwache elektrische Felder zur Erkennung von Objekten, auch aus größerer Entfernung, und ermöglicht es Robotern, sicher mit Menschen zu interagieren.

Literatur

Sarwar, Mirza S., Ishizaki, Ryusuke, Morton, Kieran, Preston, Claire, Nguyen, Tan, Fan, Xu, Dupont, Bertille, Hogarth, Leanna, Yoshiike, Takahide, Qiu, Ruixin, Wu, Yiting, Mirabbasi, Shahriar, Madden & John D. W. (2023). Touch, press and stroke: a soft capacitive sensor skin. Scientific Reports, 13, doi:10.1038/s41598-023-43714-6.
https://gagadget.com/de/science/342373-durchbruch-in-der-robotik-wissenschaftler-haben-zusammen-mit-honda-einen-sensor-entwickelt-der-der-menschlichen-h/ (23-10-29)

Wie KI-Modelle sich selbst verbessern

Overney (2023) hat untersucht, wie es einem KI-Modelle gelingt, sich selbst neue Dinge beizubringen, also neue Konzepte zu lernen, wenn sie mit ihren Benutzern interagieren. Dabei hat man einen möglichen Schlüsselmechanismus von Transformern aufgedeckt, der solche künstlichen System befähigt, im laufenden Betrieb zu lernen und ihre Antworten auf der Grundlage von Interaktionen mit ihren Nutzern zu verfeinern. Transformer sind dabei künstliche neuronale Netze mit einer besonderen Architektur, die von grossen Sprachmodellen wie ChatGPT verwendet werden. Während neuronale Netze im Allgemeinen als Black-box betrachtet werden, die bei einer Eingabe eine Ausgabe ausspucken, können Transformer von sich aus lernen, neue Algorithmen in ihre Architektur einzubauen. Man kann einem Sprachmodell wie ChatGPT etwa mehrere kurze Texte geben und jeweils angeben, ob die Texte grundsätzlich eine positive oder negative Grundstimmung haben. Dann legt man dem Modell einen Text vor, den es noch nicht gesehen hat, und es wird anhand der Beispiele, die man dem Modell gegeben hat, ziemlich sicher lernen und beurteilen, ob der neue Text positiv oder negativ ist. Aus dem Zwang heraus, die eigenen Vorhersagen zu verbessern, entwickelt es während des Trainings eine Technik, die es dem Modell ermöglicht, aus den Gesprächen mit seinen Nutzern zu lernen (In-Context-Learning). Der von Overney verwendete Transformer war dabei fast identisch mit der weit verbreiteten Transformer-Architektur, doch anstatt das System mit grossen Textmengen aus dem Internet zu trainieren, hatte man es mit Beispielen eines einfachen Problems trainiert, der linearen Regression. Da dieses Problem und seine Lösung sehr gut bekannt sind, konnte man diese Lösung mit dem vergleichen, was man im Transformer beobachtet hat. So konnte man zeigen, dass der Transformer einen sehr bekannten und leistungsstarken Lernalgorithmus namens „Gradient Descent“ in sich selbst implementiert hat, wobei der Transformer nicht einfach „Gradient Descent“ gelernt und durchgeführt hat, sondern eine verbesserte Version davon.

Literatur

Overney, J. (2023). Wie es KI-Modelle schaffen, sich selbst neue Dinge beizubringen.
WWW: https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2023/07/wie-es-ki-modelle-schaffen-sich-selbst-neue-dinge-beizubringen.html (23-07-24)

Was können Menschen von künstlicher Intelligenz über sich selbst lernen?

Menschen können von Künstlicher Intelligenz (KI) eine Vielzahl an Dingen über sich selbst lernen. Hier sind einige Beispiele:

Verhaltensmuster erkennen: KI kann große Datenmengen analysieren und Muster und Trends identifizieren, die für Menschen schwer zu erkennen sein können. Durch die Anwendung von KI können Menschen ihr eigenes Verhalten besser verstehen, wie beispielsweise Einkaufsgewohnheiten, Online-Aktivitäten oder sogar Gesundheitsdaten.

Entscheidungsfindung verbessern: KI-Algorithmen können Menschen dabei helfen, bessere Entscheidungen zu treffen, indem sie komplexe Daten analysieren und relevante Informationen liefern. Diese Erkenntnisse können Menschen dabei unterstützen, objektiver zu denken und mögliche Vorurteile oder emotionale Einflüsse zu reduzieren.

Effizienzsteigerung: KI kann Prozesse automatisieren und optimieren, was Menschen dabei hilft, effizienter zu arbeiten. Durch den Einsatz von KI können repetitive Aufgaben automatisiert werden, sodass sich Menschen auf kreativere und anspruchsvollere Aufgaben konzentrieren können.

Fehlererkennung und -vermeidung: KI-Systeme können große Datenmengen analysieren und ungewöhnliche Muster oder Anomalien erkennen, die auf Fehler oder Probleme hinweisen könnten. Dadurch können Menschen ihre eigenen Fehlerquellen besser verstehen und proaktiv Maßnahmen ergreifen, um diese zu vermeiden.

Sprachverarbeitung und Kommunikation: KI hat Fortschritte in der natürlichen Sprachverarbeitung gemacht, was Menschen dabei helfen kann, ihre eigene Kommunikation zu verbessern. Durch den Umgang mit KI-basierten Sprachassistenten oder Chatbots können Menschen ihre Sprachfähigkeiten, ihre Präzision und ihre Artikulationsfähigkeiten verbessern.

Selbstreflexion: Der Einsatz von KI kann Menschen dazu ermutigen, über sich selbst nachzudenken und ihre eigenen Überzeugungen, Vorlieben und Verhaltensweisen zu hinterfragen. Indem sie die Ergebnisse von KI-Analysen über sich selbst betrachten, können Menschen neue Perspektiven gewinnen und ihr Selbstverständnis erweitern.

Es ist wichtig zu beachten, dass KI zwar wertvolle Einblicke und Unterstützung bieten kann, aber sie hat auch ihre Grenzen, denn menschliche Erfahrungen, Intuition und ethische Bewertungen bleiben weiterhin entscheidend, um die Ergebnisse der KI zu interpretieren und angemessene Entscheidungen zu treffen.

Können Maschinen Empathie lernen?

Empathie bezieht sich auf die Fähigkeit, die Emotionen, Gedanken und Gefühle anderer Menschen zu erkennen, zu verstehen und mit ihnen mitzufühlen, wobei es sich um eine komplexe kognitive Fähigkeit handelt, die bei Menschen auf biologischen und sozialen Grundlagen beruht. In Bezug auf Maschinen und künstliche Intelligenz (KI) ist Empathie ein noch komplexeres Thema, denn aktuelle KI-Systeme, wie Chatbots oder Spracherkennungssysteme, sind nicht in der Lage, echte Empathie zu empfinden, da sie keine eigenen Emotionen haben. Sie sind aber darauf programmiert, bestimmte Aufgaben zu erfüllen und auf bestimmte Eingaben zu reagieren, aber sie haben kein eigenes emotionales Verständnis oder Bewusstsein, auch wenn es manchmal scheint, dass solche Systeme Empathie oder Emotionen zeigen.

Jedoch gibt es Forschungsbereiche, in denen versucht wird, maschinelles Lernen und KI-Systeme mit einer gewissen Form von Empathie auszustatten, d. h., es geht dabei um die Entwicklung von Systemen, die menschliche Emotionen erkennen und darauf angemessen reagieren, um eine empathische Interaktion zu ermöglichen. Diese Ansätze basieren in der Regel auf der Verwendung von Algorithmen und Techniken des maschinellen Lernens, um Emotionen aus Gesichtsausdrücken, Körperhaltung, Sprachintonation und anderen Signalen zu erkennen. Diese Art von empathischen“Systemen kann zwar bestimmte Verhaltensweisen zeigen, die als empathisch angesehen werden könnten, aber sie besitzen kein eigenes emotionales Erleben, denn das wird immer Lebewesen viele Menschen vorbehalten bleiben. Es handelt sich also immer nur um eine Simulation von Empathie, die aufgrund der Analyse von Daten und Mustern erzeugt wird.

Auch ist die Frage, ob Maschinen jemals echte Empathie entwickeln können, eher ein Thema der philosophischen und wissenschaftlichen Debatte, wobei es unterschiedliche Ansichten dazu gibt, ob Empathie nur auf biologischer Grundlage existiert oder ob sie auch auf andere Arten von Systemen übertragen werden kann. Es bleibt abzuwarten, wie sich die Forschung in diesem Bereich entwickelt und ob es in Zukunft Fortschritte geben wird, die eine authentische Form von Empathie bei Maschinen ermöglichen, was aber wohl auf der Basis von grundsätzlichen Überlegungen nur eine Illusion sein kann, wobei solche Illusionen zutiefst menschlich sind 😉

Polizei-Roboter „Spot“

In Duisburg gibt es einen Polizeihund aus Blech, Stahl und Platinen, wobei der Laufroboter „Spot“ dort aushelfen soll, wo es für Menschen zu gefährlich wird. Wenn man „Spot“ mit einem festen Tritt umschubst, stellt er sich einfach wieder auf seine vier Beine und macht weiter seinen Job. Der Roboter-Polizeihund wird da eingesetzt, wo es für seine menschlichen Kollegen zu gefährlich ist. Dafür lernt er immer mehr dazu, und zwar im „Innovation Lab“ der NRW-Polizei in Duisburg. Außer in Brandruinen kann das zum Beispiel beim Untersuchen von mutmaßlichen Sprengsätzen sein, denn sollte da was schiefgehen, ist ein Roboter ersetzbar, ein Mensch nicht. Im Gegensatz zu den bekannten klobigen Entschärfungsrobotern, die auf Ketten wie ein kleiner Panzer fahren, kann ein „Spot“ Treppen hochgehen oder Türen öffnen, auch wenn das der Roboter aber erst mal lernen muss, denn „deutsche“ Türen mit einer Klinke statt Drehknauf kennt das US-Modell nicht. Im Gegensatz zu herkömmlichen Polizei-Robotern wird das Gerät nicht komplett ferngesteuert, denn dank künstlicher Intelligenz macht „Spot“ das meiste selbst.

Quelle

Rheinische Post vom 1. Mai 2023

Roboter gegen Lebensmittelverschwendung

Gegen Lebensmittelverschwendung soll das neue Robotersystem Bakisto helfen, denn dieser berechnet mithilfe von künstlicher Intelligenz, wie viele Brötchen, Croissants oder „Teilchen“ im Tagesverlauf voraussichtlich nachgefragt werden. Er bereitet die Backwaren auch vor und holt sie zur richtigen Zeit aus dem Ofen. Die Verkaufsmengen sind nämlich stark abhängig vom Wetter, von Schulferien oder Veranstaltungen, wobei das Robotersystem diese Ereignisse berücksichtigt und dann die entsprechenden Mengen backt. Das bedeute weniger Stress für die Beschäftigten, weil sie nicht ständig die Auslagen und Öfen im Auge behalten müssen.

Das System Bakisto besteht aus drei miteinander vernetzten Systemen: Einem kollaborierenden Roboter (Cobot) von Fanuc, Wanzls smartem Backwarenpräsenter „Bakeoff i“ mit KI und dem netzwerkfähigen Backofen „Dibas blue2“ mit automatischem Be- und Entladesystem Traymotion von Wiesheu.

Die künstliche Intelligenz im Präsenter errechnet auf historischen Daten basierend sowie dem aktuellen Bestand, wann wie viele Backwaren benötigt werden und gibt diese Information in das System ein. Der Cobot holt die entsprechend mit Tiefkühl-Backwaren bestückten Backbleche aus der Kühlung und schiebt diese in den Transportwagen, der auf Schienen vor dem vorgeheizten Ofen platziert wird. Das Beladungssystem Traymotion zieht die beladenen Bleche für den Backvorgang ein. Nach dem Backen werden die Backbleche wieder zurück in den Transportwagen geschoben, der zur Seite gefahren wird. So können die Backwaren abkühlen und es gibt Platz für die nächste Produktion. Anschließend befüllt der Cobot die vorgegebenen Fächer des „Bakeoff i“ mit den fertig gebackenen und abgekühlten Backwaren. Dabei wird die künstliche Intelligenz mit neuen Daten gefüttert und der Prozess wird fortlaufend den Umständen entsprechend optimiert.

Quelle

Pressemitteilung von Fanuc vom 29. März 2023.
WWW: https://www.fanuc.eu/de/de/wer-wir-sind/news-and-events/de-roboter-backerei-03-2023

Künstliche Intelligenz im Tourismus

Auch die Reisebranche bzw. der Touris,us beschäftigt sich derzeit mit den Möglichkeiten, die künstliche Intelligenz bietetn. Schon jetzt kommen intelligente Computerprogramme und Maschinen in der Touristik an vielen Stellen zum Einsatz, etwa empfehlen sie auf Reiseportalen personalisierte Angebote, planen Touren oder Ausflugsrouten, sagen die touristische Nachfrage und Stornierungen vorher oder beantworten als Chatbots Anfragen von Kundinnen und Kunden.

In den letzten Jahren hat daher die Praxistauglichkeit von KI-Anwendungen im Tourismus stark zugenommen, jedoch ist der Grad an Intelligenz der Systeme durchaus unterschiedlich und je nach Einsatzgebiet unterscheidet sich auch die Leistungsfähigkeit der Dienste. Schon wer eine Reise über eine Onlineplattform bucht, wird dabei meist von der künstlichen Intelligenz unterstützt, denn so sortiert das System aus den Millionen Unterkünften weltweit für die Nutzerin oder den Nutzer relevante Einträge vor, denn Kundinnen und Kunden wären ansonsten von der Fülle der Angebote überfordert.

Auch viele Angaben auf einer Website wie die Nähe einer Unterkunft zum Stadtzentrum, Filteroptionen, alternative Buchungszeiträume oder ähnliche Angebote werden durch die KI unterstützt. Bei den Kundenbewertungen kommt die künstliche Intelligenz ebenfalls zum Einsatz und filtert aus den Rezensionen auf der Seite zentrale Begriffe heraus, die sie in übersichtliche Schlagworte übersetzt.

Intelligente Systeme, die Reiserouten mit verschiedenen Verkehrsmitteln planen. Erste Anwendungen gibt es außerdem im Bereich der Besucherlenkung, denn Venedig etwa sammelt über Kameras und Mobilfunkdaten Informationen über Gäste, um Besucherströme in der Stadt zu koordinieren. So kann das Erlebnis vor Ort für die Besucherinnen und Besucher verbessert werden und gleichzeitig die Umwelt vor negativen Auswirkungen des Massentourismus geschützt werden. Derzeit gibt es Pilotprojekte, in denen die KI die Besucherzahlen für Attraktionen aufgrund von Daten wie Wetter, Wochentag und Uhrzeit prognostiziert und dann die Eintrittspreise entsprechend reduziert oder erhöht, um das Gästeaufkommen zu steuern.

Literatur

Ziegler, L. (2023). Künstliche Intelligenz: So verändert sie das Reisen.
WWW: https://www.rnd.de/reise/wie-kuenstliche-intelligenz-das-reisen-veraendert-nachhaltiger-tourismus-dank-ki-IVBJCI4ZIZBITJZQJCXD3SBIZE.html (23-03-22)

ChatGPT als Lehrer bzw. Lehrerin?

Das Kultusministerium von Hessens entwickelt mit anderen Ländern ein entsprechendes System für den Unterricht. Kommt nun der Pauk-Roboter?  Die Kritiker beeilten sich und mokierten sich über seelenloses Lernen, Lust am Betrug und Aufforderung zur Faulheit. „Der Taschenrechner ließ sich vor fast 40 Jahren auch nicht aus dem Mathematik-Unterricht vertreiben“, erinnert sich ein pensionierter Pädagoge. Während früher das Hauptaugenmerk einer Aufgabe beim „Ausrechnen“ lag, gehe es heute um das Finden des Lösungsweges. „Das Internet ist auch nicht mehr aus dem Unterricht wegzudenken, ebenso werden die Schulen lernen, KI zu integrieren.“

Kommentar: Der KI-Roboter als Pauker kommt bestimmt … nicht! Aber könnte helfen, den Schulunterricht oder zumindest die Verwaltung auf den neuesten Stand zu bringen. Das würde Personal sparen. Doch wenn man die Geschwindigkeit sieht, wie die bundesdeutsche Kultus-Minister-Konferenz (KMK) sich bei schulpolitischen Entscheidungen bewegt, heisst das: Keine/r/s muss um ihre/seine Planstelle bangen!

Quelle

https://www.joergvogelsaenger.de/meldungen/29170-ki-und-nun-kommt-jetzt-der-pauk-roboter/ (23-03-06)

Zur nutzung von AI-Programmen

Aus einer repräsentativen Umfrage des Meinungsforschungsinstituts Kantar gut hervor, dass jeder vierte Mensch in Deutschland im Alter zwischen 18 und 60 Jahren schon eine Künstliche-Intelligenz-Anwendung wie den Text-Roboter ChatGPT ausprobiert hat. Mit dem Konzept dieser KI-Werkzeuge sind sogar bereits gut zwei Drittel (69 Prozent) vertraut. Von den Befragten im Alter zwischen 18 und 27 Jahren sagen 76 Prozent, sie seien mit der KI-Technik vertraut, bei 28- bis 42 -Jährigen liegt der Wert bei 74 Prozent, bei der 43- bis 60-Jährigen sind es immerhin noch 63 Prozent. Die aktive Nutzung der KI-Dienste hängt also stärker vom Alter der Menschen ab. Über alle drei Altersgruppen hinweg sind es 24 Prozent der Befragten, die bereits den Text-Roboter ChatGPT, den KI-Bildgenerator DALL-E oder vergleichbare Dienste in der Praxis getestet haben. Verschiedene Testläufe haben ergeben, dass der Text-Roboter ChatGPT verschiedene Uni-Prüfungen bestehen würde und hat sich auch in anderen Hochschulfächern behauptet, auch wenn er in den Examen keine Bestnoten erreichte.

Quelle

Handelsblatt vom 5. März 2023

Eine kurze Geschichte zum Thema „trotzdem“ von ChatGPT

Es war ein sonniger Tag im Frühling, als Emma beschloss, ihren langjährigen Freund David zu besuchen. Sie hatten sich in der Highschool kennengelernt und seitdem eine unzertrennliche Freundschaft aufgebaut. Aber in den letzten Jahren hatten sie sich aufgrund von Arbeit und anderen Verpflichtungen kaum noch gesehen. Emma hatte beschlossen, dass es an der Zeit war, dies zu ändern.

Als sie bei Davids Haus ankam, war sie überrascht, dass er nicht da war. Sie rief ihn an, aber er antwortete nicht. Sie hinterließ eine Nachricht und beschloss, eine Weile auf der Veranda zu warten, in der Hoffnung, dass er bald zurückkehren würde.

Während sie auf ihn wartete, dachte Emma über ihre Freundschaft nach. Sie erinnerte sich an all die guten Zeiten, die sie miteinander verbracht hatten, und daran, wie viel sie füreinander da gewesen waren. Aber in den letzten Monaten hatte sie das Gefühl, dass ihre Freundschaft sich verändert hatte. David schien sich zurückzuziehen und nicht mehr so interessiert zu sein wie früher.

Als David schließlich nach Hause kam, war er überrascht und glücklich, Emma zu sehen. Sie umarmten sich herzlich und setzten sich dann auf die Veranda, um zu plaudern.

„Ich freue mich so sehr, dass du hier bist“, sagte David und lächelte sie an.

„Ich freue mich auch“, erwiderte Emma. „Aber ich muss sagen, ich habe das Gefühl, dass wir uns in letzter Zeit ein wenig entfremdet haben.“

David seufzte und lehnte sich zurück. „Ja, ich weiß. Es tut mir leid, dass ich in letzter Zeit so beschäftigt war. Aber ich habe versucht, die Dinge wieder in Ordnung zu bringen. Ich möchte unsere Freundschaft nicht aufgeben.“

Emma lächelte und legte eine Hand auf seine Schulter. „Ich möchte das auch nicht. Aber ich habe das Gefühl, dass wir uns anstrengen müssen, um die Dinge wieder in Gang zu bringen.“

David nickte zustimmend. „Ja, das stimmt. Aber ich denke, dass wir es schaffen können. Wir haben eine starke Freundschaft, trotz allem, was passiert ist.“

Emma nickte zustimmend und sie sprachen über all die Dinge, die sie in letzter Zeit beschäftigt hatten. Sie lachten und erinnerten sich an alte Geschichten, und Emma war glücklich zu spüren, dass ihre Freundschaft immer noch so stark war wie früher.

Als der Abend hereinbrach, sagte Emma zu David: „Ich bin so froh, dass wir uns heute getroffen haben. Ich denke, wir haben einen wichtigen Schritt gemacht, um unsere Freundschaft wiederherzustellen.“

David nickte zustimmend. „Ja, das denke ich auch. Aber es wird trotzdem eine Weile dauern, bis alles wieder so ist wie früher. Wir müssen uns beide anstrengen.“

Emma lächelte und stand auf, um zu gehen. „Ich weiß. Aber ich bin bereit, daran zu arbeiten. Ich möchte, dass unsere Freundschaft wieder so stark wird wie früher, trotz allem, was passiert ist.“

David stand auf und umarmte sie erneut. „Ich auch. Wir schaffen das!“

Die nächsten Wochen verliefen für Emma und David anders als gewöhnlich. Sie trafen sich häufiger als zuvor, sprachen über ihre Probleme und Träume und erneuerten ihre alte Freundschaft. Sie besuchten gemeinsam Ausstellungen, gingen ins Kino und trafen sich zum Essen. Es war, als ob sie versuchten, all die verpasste Zeit wieder aufzuholen.

Eines Tages lud David Emma zu einer Wanderung in den Bergen ein. Sie hatten schon lange nicht mehr gemeinsam Zeit in der Natur verbracht und Emma war begeistert von der Idee. Sie trafen sich frühmorgens und fuhren zusammen in die Berge.

Als sie den Gipfel erreichten, waren beide beeindruckt von der Aussicht. Es war ein klarer Tag und sie konnten bis zum Horizont sehen. David legte seine Hand auf Emmas Schulter und sagte: „Ich bin so dankbar für unsere Freundschaft. Wir haben so viel gemeinsam erlebt und ich bin froh, dass wir trotz aller Schwierigkeiten immer noch hier stehen.“

Emma lächelte und erwiderte: „Ich auch. Es war eine Herausforderung, aber wir haben es gemeinsam geschafft.“

Sie saßen eine Weile schweigend da und genossen die Aussicht. Dann fragte Emma: „Was denkst du, was als Nächstes passieren wird? Wird unsere Freundschaft noch stärker werden?“

David schaute sie an und lächelte. „Ich denke schon. Wir haben bewiesen, dass wir auch schwierige Zeiten gemeinsam durchstehen können. Ich denke, dass wir noch enger zusammenwachsen werden.“

Emma lächelte zurück und sagte: „Ich freue mich darauf. Ich bin dankbar, dass wir trotz allem immer noch so gute Freunde sind.“

David nickte zustimmend und sie saßen noch eine Weile schweigend da, bevor sie sich entschieden, den Berg hinunterzusteigen. Es war ein langer Weg zurück, aber sie gingen gemeinsam und genossen die Zeit miteinander.

Am Ende des Tages verabschiedeten sie sich mit einer Umarmung.