Fußballspielende Roboter

Nach einem Bericht haben Forscher von Google DeepMind humanoiden Robotern das Fußballspielen beigebracht, und zwar mithilfe von Deep Reinforcement Learning, bei dem diese lernten, wie man Tore schießt und eine Eins-gegen-Eins-Verteidigung aufbaut. Auf der Hardware-Seite verwendete man Robotis OP3, kleine zweibeinige Roboter mit 20 Gelenken, für die KI verwendeten man das Deep Reinforcement Learning, also das Lernen durch tiefe Verstärkung. Für das Sehen in der realen Welt setzte man auf Neural Radiance Field, eine KI, die aus wenigen zweidimensionalen Bildern eine 3D-Darstellung der Szene erstellen kann. Die Spiele bestehen derzeit aus Eins-gegen-Eins-Spielen auf einem vier mal fünf Meter großen Spielfeld, wobei die Roboter die Aufgabe haben, ein Tor zu schießen und gleichzeitig den anderen am Torschuss zu hindern. Dafür mussten sie Verhaltensweisen wie Laufen, Drehen, Seitwärtsschritt, Kicken, Passen, Aufstehen nach einem Sturz oder Interaktion mit einem Objekt erlernen.

Literatur

https://www.futura-sciences.com/de/diese-humanoid-roboter-liefern-beim-fussball-hoechstleistungen-ab-sie-dribbeln-und-schiessen-wie-ein-mensch_13374/ (23-05-10)

Begriffsklärungen: VR, MR, XR & AR

Mixed Reality (MR) ist eine Technologie, die die reale Welt mit der virtuellen Welt kombiniert, um eine immersive Erfahrung zu schaffen, die Elemente beider Welten in Echtzeit zusammenbringt. Im Gegensatz zu Virtual Reality (VR), bei der die Nutzer in eine vollständig virtuelle Welt eintauchen, oder Augmented Reality (AR), bei der virtuelle Objekte in die reale Welt eingefügt werden, ermöglicht MR den Nutzern die Interaktion mit virtuellen Objekten in der realen Welt und umgekehrt. Diese Technologie nutzt fortschrittliche Sensoren und Kameras, um die Umgebung des Nutzers zu erfassen und virtuelle Objekte darauf zu projizieren. MR kann in verschiedenen Bereichen wie Spiele, Bildung, Architektur, Gesundheitswesen und Unterhaltung eingesetzt werden.

Extended Realität (XR) ist ein Sammelbegriff, der die virtuelle Realität (VR), die erweiterte Realität (AR) und die gemischte Realität (MR) umfasst. XR geht also über die Grenzen einer einzelnen Realität hinaus und schafft ein nahtloses Erlebnis, das Elemente aus der realen und der virtuellen Welt miteinander verbindet. XR-Technologien werden durch Headsets, Kameras, Sensoren und andere Geräte ermöglicht, die dem Nutzer ein immersives Erlebnis bieten. Während VR die Benutzer in eine vollständig virtuelle Welt eintauchen lässt und AR virtuelle Objekte in die reale Welt einfügt, ermöglicht MR den Benutzern die Interaktion mit virtuellen Objekten in der realen Welt. XR-Anwendungen sind in verschiedenen Bereichen wie Unterhaltung, Bildung, Gesundheitswesen, Architektur und anderen Branchen zu finden. Sie bieten den Nutzern eine einzigartige Möglichkeit, in virtuelle Welten einzutauchen oder reale Welten mit digitalen Inhalten anzureichern.

Augmented Reality (AR) ist eine Technologie, bei der virtuelle Objekte in die reale Welt eingefügt werden, wodurch ein erweitertes Erlebnis entsteht. Im Gegensatz zur virtuellen Realität (VR), bei der die Nutzer in eine völlig virtuelle Welt eintauchen, können sie mit AR die reale Welt sehen und gleichzeitig digitale Inhalte wie 3D-Objekte, Text oder Bilder hinzufügen. Die AR-Technologie wird durch Smartphones, Tablets, Smart Glasses oder andere AR-fähige Geräte ermöglicht. Die Geräte erfassen die Umgebung des Nutzers und fügen dann virtuelle Inhalte zu dem Bild hinzu, das der Nutzer durch das Gerät sieht. AR-Anwendungen können in verschiedenen Bereichen wie Unterhaltung, Bildung, Gesundheitswesen und Werbung eingesetzt werden. Ein bekanntes Beispiel für AR ist die App Pokemon GO, bei der die Spieler ihre Umgebung mit ihrem Smartphone scannen und Pokemon in der realen Welt fangen können. Ein anderes Beispiel ist die IKEA-App, mit der Kunden virtuell Möbel in ihrer eigenen Wohnung ausprobieren können, um zu sehen, wie sie aussehen und passen.

Die virtuelle Realität (VR) ist eine Technologie, die es den Nutzern ermöglicht, in eine vollständig virtuelle Welt einzutauchen und ein intensives Erlebnis zu haben. VR wird durch spezielle Headsets ermöglicht, die dem Benutzer ein visuelles und oft auch akustisches Erlebnis bieten, das ihn in eine andere Realität versetzt. Das VR-Headset kann entweder per Kabel oder drahtlos mit einem Computer, einer Konsole oder einem Smartphone verbunden werden. Für das visuelle Erlebnis sorgt ein Display im Headset, das ein stereoskopisches 3D-Bild erzeugt, während das Audioerlebnis über eingebaute Lautsprecher oder Kopfhörer vermittelt wird. Die Benutzer können in der VR-Umgebung interagieren und in vielen Fällen auch die Umgebung beeinflussen. VR-Anwendungen können in verschiedenen Bereichen wie Unterhaltung, Bildung, Gesundheitswesen, Architektur und anderen Branchen eingesetzt werden. Ein bekanntes Beispiel für VR sind die VR-Versionen von Videospielen, bei denen die Benutzer in die Spielwelt eintauchen und mit ihr interagieren können. Ein weiteres Beispiel ist der Einsatz von VR in der Bildung, wo Schüler eine virtuelle Reise durch historische Orte unternehmen oder komplexe wissenschaftliche Konzepte auf visuell ansprechende Weise erleben können.

Add-on-Robotik in Schulen

In Bezug auf den Unterricht in Schulen gibt es verschiedene Möglichkeiten, wie Add-on-Robotik eingesetzt werden kann, um Schülerinnen und Schülern eine praxisnahe Erfahrung in der Robotik zu vermitteln. Eine Möglichkeit ist der Einsatz von Bausätzen oder Kits, die es den Schülern ermöglichen, Roboter zu bauen und zu programmieren. Diese Kits können verschiedene Hardware-Komponenten enthalten, wie Motoren, Sensoren und Steuerplatinen, sowie Software-Tools zum Programmieren des Roboters. Durch die Arbeit mit diesen Kits können die Schülerinnen und Schüler grundlegende Konzepte der Robotik und Programmierung erlernen und ihr Verständnis durch praktische Anwendungen vertiefen. Eine andere Möglichkeit ist der Einsatz von spezieller Software, die es den Schülern ermöglicht, virtuelle Roboter zu programmieren und zu testen. Diese Software kann verschiedene Funktionen enthalten, wie z.B. eine grafische Benutzeroberfläche, die es den Schülern erleichtert, den Code zu schreiben, sowie Simulationstools, die es den Schülern ermöglichen, ihre Programme zu testen und zu optimieren. Zusätzlich können auch externe Experten oder Fachleute in die Schulen eingeladen werden, um Workshops oder Vorträge zu halten und den Schülern eine breitere Perspektive auf die Anwendung von Robotik in der realen Welt zu geben. Auf diese Weise können die Schülerinnen und Schüler auch inspiriert werden, ihr Interesse an Robotik und Technologie zu vertiefen und möglicherweise eine Karriere in diesem Bereich anzustreben.

Mittlerweile gibt es an sehr vielen Schulen das Fach Robotik, allerdings nicht verpflichtend. „Robotik ist kein fester Teil des Schulalltags, sondern eine Art Add-on. Es ist nicht verpflichtend, sondern zusätzlich“, sagt Nicholas Dostal, Mitarbeiter des BBZ-Mitte. „Es ist auch keine Ausbildung, sondern eher ein Seminar, welches wir auch anbieten. Trotzdem wäre es gut, einen solchen Kurs im Lebenslauf zu erwähnen, denn für manche Berufe wie Elektro, -Metall- und Fahrzeugtechnik braucht man Robotik. Durch Robotik bekommt man außerdem einen Einblick in Technologien, die es immer häufiger geben wird. Es gibt jetzt schon überall Roboter und es werden in Zukunft immer mehr. Und da kann es nicht schaden, sich mit ihnen auszukennen. Jeder, der Spaß und Lust am Arbeiten mit Robotern hat, sollte, das auf jeden Fall ausprobieren.“

In manchen Schulen werden Roboter jetzt schon eingesetzt. Ein Beispiel dafür sind LEGO-Roboter, die inzwischen immer häufiger im Fach Informatik zum Einsatz kommen. In verschiedenen Schulen gibt es sogar schon humanoide Roboter, die mit den Heranwachsenden interagieren können. Beispielsweise durch die Analyse von Mimik und Gestik der Kinder oder auch durch Sprechen mit ihnen. Natürlich haben nicht alle Roboter dieselben Fähigkeiten, weshalb mehrere Arten eingesetzt werden können – zum Beispiel Pepper. Pepper ist ein humanoider Roboter, der in der Lage ist, die Mimik und Gestik von Menschen zu analysieren und auf diese zu reagieren. Ein weiteres Beispiel für Roboter im Unterricht sind Nao-Roboter. Diese Roboter können sehen, sprechen, hören, sich bewegen und tasten. Somit können die Heranwachsenden mit ihnen interagieren.

Literatur

https://m.osthessen-news.de/n11744440/roboter-als-lehrer-die-revolution-an-den-schulen.html (23-05-08)

Museum für Robotik und Mobilität

Das Deutsches Museum Bonn eröffnet neuen Erlebnisraum zu Robotik und Mobilität, wobei das Leitexponat des neuen Ausstellungsbereichs der Forschungsroboter RHINO der Universität Bonn ist, der in den 1990er Jahren als interaktiver Museums-Guide seine Runden durch das Deutsche Museum Bonn drehte. RHINO ist ein Stück Wissenschaftsgeschichte und legte wesentliche Grundlagen für die Entwicklung des autonomen Fahrens. Wie weit die Entwicklung des autonomen Fahrens seit RHINO´s Zeiten vorangeschritten ist, veranschaulicht ein futuristischer Fahrsimulator, der die technischen Grundlagen und Rahmenbedingungen des Einsatzes von Künstlicher Intelligenz beim autonomen Fahren erlebbar macht. Mit dem Roboterhund GO1 und dem Laufroboter LAURON IVc halten zwei potenzielle Publikumslieblinge Einzug in die Räume des Deutschen Museums Bonn, die zeigen, wie Roboter mit Hilfe Künstlicher Intelligenz das Laufen lernten. Als ”Gaststar“ wird der weltweit erste kommerziell erhältliche kognitive Roboter MAiRA von NEURA Robotics aus Metzingen an den Eröffnungstagen den neuen Erlebnisraum bereichern, wobei kollaborative Roboter, also Roboter die direkt mit Menschen zusammenarbeiten können, eine der vielversprechendsten aktuellen Entwicklungen in der Robotik sind. Damit die Zusammenarbeit gelingt, muss der Roboter sein menschliches Gegenüber nicht nur erkennen, sondern auch mit ihm kommunizieren können.

Eröffnet wird der neue ”Erlebnisraum RoboMob“ am Donnerstag, 11. Mai 2023 um 19 Uhr mit dem KI-Talk ”KI, Roboter und wir – wie gestalten wir unsere gemeinsame Zukunft?“. Dazu gibt es einen Livestream: https://youtube.com/live/siyJp9TGEAw

Quelle

https://www.lifepr.de/inaktiv/deutsches-museum-bonn/deutsches-museum-bonn-eroeffnet-neuen-erlebnisraum-zu-robotik-und-mobilitaet/boxid/945056 (23-05-05)

Robotik schon für die Grundschule?

Die Stadt Bielefeld berichtet am 4. Mai 2023, dass Lehrkräfte an Grundschulen, Lehramtsanwärter und -innen, Studierende und OGS-Mitarbeitende die Einsatzmöglichkeiten von Dash in einem Workshop kennenlernen sollen, um den Kindern einen kindgerechten Einstiegswerkzeug in die Welt der Robotik zu ermöglichen.

Der kleine Roboter Dash kann nicht nur singen und tanzen und durch den Raum flitzen, sondern auch stimmungsabhängig mit den Augen blinzeln und auf Geräusche und Hindernisse in der Umgebung reagieren. Spielerische Apps laden zum Mitmachen ein und der Entdeckergeist wird geweckt – und das immer altersgerecht, interaktiv und kreativ.

Roboter-Boom in Indien

Indien zählt nach einem Bericht der der International Federation of Robotics zu den am schnellsten wachsenden Industrie-Nationen weltweit. Innerhalb von fünf Jahren hat sich der operative Bestand an Industrie-Robotern mehr als verdoppelt und erreichte im Jahr 2021 insgesamt 33.220 Einheiten. Gemessen an den Produktionszahlen des verarbeitenden Gewerbes ist Indien heute die fünftgrößte Volkswirtschaft weltweit, wobei die Automobil-Industrie der größte Kunde für die Robotik-Industrie in Indien mit einem Marktanteil von 31 % im Jahr 2021 bleibt. Die Zahl der Installationen hat sich mit 1.547 Einheiten mehr als verdoppelt. Das langfristige Potenzial für die Robotik in Indien lässt sich mit einem Vergleich zu China besonders verdeutlichen: Indiens Roboterdichte in der Automobil-Industrie, also die Anzahl der Industrie-Roboter pro 10.000 Beschäftigte, erreicht im Jahr 2021 insgesamt 148 Einheiten. Chinas Roboterdichte lag 2010 noch bei 131 Einheiten und stieg bis 2021 auf 772 Einheiten sprunghaft an.

Neue Produktionskapazitäten sind ein wichtiger Schritt, um der indischen Bevölkerung angemessene Bildungs- und Beschäftigungsmöglichkeiten zu bieten, denn nach Hochrechnungen der Vereinten Nationen hat Indien inzwischen eine Bevölkerung von 1,4 Mrd. Menschen erreicht und übertrifft damit erstmals China. Dies bedeutet, dass Indien über eine große und junge Bevölkerung von Erwerbstätigen verfügt, die Wirtschaftswachstum und Innovation vorantreiben kann. Den Prognosen zufolge wird Indien bis 2027 die Volkswirtschaft mit der weltweit größten Bevölkerung im erwerbsfähigen Alter sein.

Quelle

https://ifr.org/ifr-press-releases/news/indias-robot-boom-hits-all-time-high (23-05-04)

Polizei-Roboter „Spot“

In Duisburg gibt es einen Polizeihund aus Blech, Stahl und Platinen, wobei der Laufroboter „Spot“ dort aushelfen soll, wo es für Menschen zu gefährlich wird. Wenn man „Spot“ mit einem festen Tritt umschubst, stellt er sich einfach wieder auf seine vier Beine und macht weiter seinen Job. Der Roboter-Polizeihund wird da eingesetzt, wo es für seine menschlichen Kollegen zu gefährlich ist. Dafür lernt er immer mehr dazu, und zwar im „Innovation Lab“ der NRW-Polizei in Duisburg. Außer in Brandruinen kann das zum Beispiel beim Untersuchen von mutmaßlichen Sprengsätzen sein, denn sollte da was schiefgehen, ist ein Roboter ersetzbar, ein Mensch nicht. Im Gegensatz zu den bekannten klobigen Entschärfungsrobotern, die auf Ketten wie ein kleiner Panzer fahren, kann ein „Spot“ Treppen hochgehen oder Türen öffnen, auch wenn das der Roboter aber erst mal lernen muss, denn „deutsche“ Türen mit einer Klinke statt Drehknauf kennt das US-Modell nicht. Im Gegensatz zu herkömmlichen Polizei-Robotern wird das Gerät nicht komplett ferngesteuert, denn dank künstlicher Intelligenz macht „Spot“ das meiste selbst.

Quelle

Rheinische Post vom 1. Mai 2023

Anziehbarer Roboter

Roboter können nicht nur in der Industrie oder im Alltag helfen, sondern auch in der Medizin., wobei die Hyundai Motor Company den Wearable Roboter „X-ble Mex“ entwickelt hat. Der Roboter soll die Rehabilitation von querschnittsgelähmten Patienten erleichtern und die Forschung auf diesem Gebiet vorantreiben.

Der „X-ble Mex“ ist ein Roboter zum Anziehen, der bei der Rekonstruktion der unteren Muskulatur und der Wiederherstellung der Gelenkmobilität helfen soll. Der Roboter soll vor allem für querschnittsgelähmte Patienten von Vorteil, da er sie bei einer Vielzahl von Bewegungen unterstützt, etwa beim Gehen auf ebenen Flächen, beim Treppensteigen sowie beim Sitzen oder Stehen.

Quelle

https://www.konstruktionspraxis.vogel.de/roboter-fuer-rehabilitation-querschnittsgelaehmter-patienten-a-cfc1f52c2c39434a11e7c254ba1b852f/ (23-04-28)

Roboterführerschein

Der Roboterführerschein soll nach einheitlichen Qualitätskriterien vergeben werden und ist eine Qualifizierung für alle, die sich mit der Robotik beschäftigen. Dieses Angebot richtet sich an eine breite Zielgruppe, etwa Mitarbeiter in Planungs- und Engineering-Bereichen, Applikationsingenieure, Mitarbeiter von Handwerksbetrieben, Studierende und Auszubildende in technischen Fachrichtungen.

Die Lehrpläne des Roboterführerscheins sind modular aufgebaut. Am Ende der Ausbildung sollen die erworbenen Kenntnisse unter Beweis gestellt werden, beispielsweise im Rahmen des Praxistages bei einer Übungsaufgabe an einem Roboter. Ziel ist ein einheitliches, qualitativ überprüftes Schulungsniveau.

Für den Roboterführerschein hat der Deutsche Robotik Verband den TÜV SÜD als neues Verbandsmitglied und Partner gewonnen, wobei sich die Kooperation darauf bezieht, dass TÜV SÜD die sicherheitsrelevanten Inhalte für die Prüfungen beim Roboterführerschein mitbestimmt, so dass diese dem aktuellen Stand der normativen Regularien entsprechen und dass eine gleichbleibend hohe Qualität der Ausbildung gewährleistet ist.

Quelle

https://robotikverband.de/deutscher-robotik-verband-kooperiert-mit-tuev-sued-beim-roboterfuehrerschein/ (23-04-25)

Wahrnehmung der Umgebung durch Roboter

Eine präzise Wahrnehmung der Umgebung ist notwendig, damit ein Roboter sicher und effizient navigieren kann. Ein wichtiges Anwendungsfeld sind industrielle Umgebungen, ein sehr dynamisches Umfeld, besonders wenn der Einsatzort etwa ein Warenlager ist, das nicht von Beginn an für die Automation gedacht war. An der Universität in Örebro haben wir uns in der Forschung ganz bewusst für ein „semi-kontrolliertes Umfeld“ entschieden, in dem die Fahrzeuge langsamer als etwa Autos unterwegs sind und Änderungen eingeführt werden können, die dem Roboter Teilaufgaben erleichtern können. Hier lassen sich zudem Sicherheitswesten nutzen, die die Mitarbeitenden tragen und so zuverlässig zu erkennen sind – auch im Dunkeln. Wären wir direkt in den Straßenverkehr gegangen, hätten wir in dem gegebenen Umfeld zu viele Herausforderungen auf einmal gehabt.

Quelle

https://www.tum.de/aktuelles/alle-meldungen/pressemitteilungen/details/der-robotik-einen-weiteren-sinn-hinzufuegen (23-04-21)